Abstract

BackgroundCircular RNAs (circRNAs), an extremely stable group of RNAs, possess a covalent closed-loop configuration. Numerous studies have highlighted the involvement of circRNAs in physiological processes and the development of various diseases. The present study aimed to investigate how circRNA regulates the osteogenic differentiation of human dental pulp stem cells (hDPSCs). MethodsWe isolated hDPSCs from dental pulp and used next-generation sequencing analysis to determine the differentially-expressed circRNAs during osteogenic differentiation. Bioinformatics and dual-luciferase reporter assays identified the downstream targets. The role of circRNAs in osteogenic differentiation was further confirmed through the use of heterotopic bone models. ResultsWe found that hsa_circ_0036872 expression was increased during osteogenic differentiation of hDPSCs, and downregulation of hsa_circ_0036872 inhibited their osteogenic differentiation. Dual-luciferase reporter assays showed that both miR-143-3p and IGF2 were downstream targets of hsa_circ_0036872. Overexpression of IGF2 or inhibition of miR-143-3p restored the osteogenic differentiation ability of hDPSCs after silencing hsa_circ_0036872. Overexpression of IGF2 reversed the inhibitory effect of miR-143-3p on osteogenic differentiation. ConclusionTaken together, our results show that hsa_circ_0036872 exerts an important promotional effect in enhancing the osteogenesis of dental pulp stem cells by regulating the miR-143-3p/IGF2 axis. These data suggest a novel therapeutic strategy for osteoporosis treatment and periodontal tissue regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call