Abstract

Our preliminary experiment discovered that hsa_circ_0013561 was aberrantly expressed in OC. However, the underlying mechanism is unclear. The expression of hsa_circ_0013561 in OC cells and tissues was detected by RT-qPCR and fluorescence in situ hybridization. The effects of hsa_circ_0013561 on the proliferation and metastasis of OC were explored by functional experiments such as cell counting kit-8, transwell, and tumor xenograft models. To mechanistically understand the regulatory role of hsa_circ_0013561, bioinformatics analysis, Western blot, luciferase reporter assay, and a series of rescue experiments were applied. We found that the hsa_circ_0013561 expression was elevated in OC cells and tissues, and was correlated with metastasis formation. Downregulation of hsa_circ_0013561 suppressed the proliferation and migration of OC cells both in vitro and in vivo. Regarding the interactions of hsa_circ_0013561, the luciferase reporter assay verified that miR-23b-3p and Annexin A2 (ANXA2) were its downstream targets. MiR-23b-3p inhibition or ANXA2 overexpression reversed OC cell proliferation, migration, and epithelial-mesenchymal transition (EMT) post-hsa_circ_0013561 silencing. Moreover, ANXA2 overexpression also reversed OC cell migration, proliferation, and EMT after miR-23b-3p upregulation. Our data suggest that hsa_circ_0013561 increases the expression of ANXA2 by regulating miR-23b-3p competitively, resulting in EMT and metastasis of OC. Thus, hsa_circ_0013561 may serve as a novel oncogenic biomarker for OC progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call