Abstract

Object detection methods are commonly employed in power safety monitoring systems to detect violations in surveillance scenes. However, traditional object detection methods are ineffective for small objects that are similar to the background information in the power monitoring scene, which consequently affects the performance of violation behavior detection. This paper proposed a small object detection algorithm named HS-YOLO, based on High-Resolution Network (HRNet) and sub-pixel convolution. First, to fully extract the microfeature information of the object, a small object feature extraction backbone network is proposed based on the HRNet structure. The feature maps of different scales are processed by multiple parallel branches and fused with each other in the network. Then, to fully retain the effective features of small objects, the sub-pixel convolution module is incorporated as the upsampling operator in the feature fusion network. The low-resolution feature map is upsampled to a higher resolution by reorganizing pixel values and performing padding operations in this module. On our self-constructed power operation dataset, the HS-YOLO algorithm achieved a mAP of 87.2%, which is a 3.5% improvement compared to YOLOv5. Particularly, the dataset’s AP for detecting small objects such as cuffs, necklines, and safety belts is improved by 10.7%, 5.8%, and 4.4%, respectively. These results demonstrate the effectiveness of our proposed method in detecting small objects in power operation scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.