Abstract

Honey’s chemical and sensory characteristics depend on several factors, including its botanical and geographic origins. The consumers’ increasing interest in monofloral honey and honey with a clear indication of geographic origin make these types of honey susceptible to fraud. The aim was to propose an original chemometric approach for honey’s botanical and geographic authentication purposes. The volatile fraction of almost 100 Italian honey samples (4 out of which are from Greece) from different regions and botanical origins was characterized using HS-SPME-GC-MS; the obtained data were combined for the first time with a genetic algorithm to provide a model for the simultaneous authentication of the botanical and geographic origins of the honey samples. A total of 212 volatile compounds were tentatively identified; strawberry tree honeys were those with the greatest total content (i.e., 4829.2 ng/g). A greater variability in the VOCs’ content was pointed out for botanical than for geographic origin. The genetic algorithm obtained a 100% correct classification for acacia and eucalyptus honeys, while worst results were achieved for honeydew (75%) and wildflower (60%) honeys; concerning geographic authentication, the best results were for Tuscany (92.7%). The original combination of HS-SPME-GC-MS analysis and a genetic algorithm is therefore proposed as a promising tool for honey authentication purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.