Abstract

The research presented in this paper focuses on Head-Related Transfer Function (HRTF) individualization using deep learning techniques. HRTF individualization is paramount for accurate binaural rendering, which is used in XR technologies, tools for the visually impaired, and many other applications. The rising availability of public HRTF data currently allows experimentation with different input data formats and various computational models. Accordingly, three research directions are investigated here: (1) extraction of predictors from user data; (2) unsupervised learning of HRTFs based on autoencoder networks; and (3) synthesis of HRTFs from anthropometric data using deep multilayer perceptrons and principal component analysis. While none of the aforementioned investigations has shown outstanding results to date, the knowledge acquired throughout the development and troubleshooting phases highlights areas of improvement which are expected to pave the way to more accurate models for HRTF individualization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.