Abstract

The purpose of this research was to explore the parameters of the aromatics lattice fringes by using high resolution transmission electron microscopy (HRTEM) patterns, combined with ArcGIS and MATLAB methods, to quantitatively evaluate and analyze the coal samples oxidized by different concentrations of H2O2, and to explore the changes in the morphology and spatial distribution of the aromatic system under oxidation. As the degree of oxidation increased, the orientation of the aromatic lattice fringes became more disordered, and the distortion degree increased. The distribution range of Y and T type dislocation structures, which were widely distributed in short (<0.59 nm) lattice fringes, increased, while that of spiral type dislocation structures, which were distributed in medium (0.59-0.99 nm) and long (1.00-2.49 nm) lattice fringes, decreased. In addition, the collapse and condensation of aromatic slices caused by continuous oxidation further weakened the π-π stacking effect between aromatic rings, resulting in a decrease in the interlayer distance and stacking height. The advantages of HRTEM analysis were confirmed by XRD, SEM and FTIR analysis. This provides a new perspective on the oxidation phenomenon and enriches the examination of the low-temperature oxidation mechanism of coal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call