Abstract

Poly(DL-lactic-co-glycolic acid) microspheres are prepared using a double-emulsion technique and are loaded with the model enzyme horseradish peroxidase (HRP). These microspheres can be used alone or as coatings for bioresorbable fibers that may be used as scaffolds for tissue regeneration applications. The present study focuses on the effect of the copolymer's composition and initial molecular weight on the microsphere structure, encapsulation efficiency, and cumulative protein release for 12 weeks. The release profiles generally exhibits an initial burst effect accompanied by slow release over an extended period of time, during which diffusion rather than degradation controlled HRP release from these structures. An increase in the initial molecular weight or in the copolymer's lactic acid content results in larger microspheres with smoother surfaces, and a decrease in the burst release and in the total HRP release. Molecular weight is found to have a stronger effect than copolymer composition. We demonstrate that it is possible to obtain versatile release profiles, which can be tailored for specific applications by choosing the right initial molecular weight and copolymer composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call