Abstract

Bacterial type III secretion systems (T3SSs) are specialized multicomponent nanomachines that mediate the transport of proteins either to extracellular locations or directly into eukaryotic host cell cytoplasm. Erwinia amylovora, the main agent of rosaceous plants fireblight disease, employs an Hrp/Hrc1 T3SS to accomplish its pathogenesis. The regulatory network that controls the activation of this T3SS is largely unknown in E. amylovora. However, in Pseudomonas syringae pathovars, the HrpG/HrpV complex has been shown to directly regulate the activity of transcription factor HrpS and consequently the upregulation of the Hrp/Hrc1 T3SS related genes. In this work, we report the successful recombinant production and purification of a stable E. amylovora HrpG/HrpV complex, using pPROpET, a bicistronic expression vector. Furthermore, we present the first solution structure of this complex based on small-angle X-ray scattering data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call