Abstract
Maximal heart rate (HRmax) is associated mostly with age, but age alone explains the variance in HRmax to a limited degree and may not be adequate to predict HRmax in certain groups. The present study was carried out on 3374 healthy Caucasian, Polish men and women, clients of a sports clinic, mostly sportspeople, with a mean age of 36.57 years, body mass 74.54 kg, maximum oxygen uptake (VO2max, ml∗kg–1 ∗min–1) 50.07. Cardiopulmonary exercise tests (CPET) were carried out on treadmills or cycle ergometers to evaluate HRmax and VO2max. Linear, multiple linear, stepwise, Ridge and LASSO regression modeling were applied to establish the relationship between HRmax, age, fitness level, VO2max, body mass, age, testing modality and body mass index (BMI). Mean HRmax predictions calculated with 5 previously published formulae were evaluated in subgroups created according to all variables. HRmax was univariately explained by a 202.5–0.53∗age formula (R2 = 19.18). The weak relationship may be explained by the similar age with small standard deviation (SD). Multiple linear regression, stepwise and LASSO yielded an R2 of 0.224, while Ridge yielded R2 0.20. Previously published formulae were less precise in the more outlying groups of the studied population, overestimating HRmax in older age groups and underestimating in younger. The 202.5–0.53∗age formula developed in the present study was the best in the studied population, yielding lowest mean errors in most groups, suggesting it could be used in more active individuals. Tanaka’s formula offers the second best overall prediction, while the 220-age formula yields remarkably high mean errors of up to 9 bpm. In conclusion, adding the studied variables in multiple regression models improves the accuracy of prediction only slightly over age alone and is unlikely to be useful in clinical practice.
Highlights
Heart rate (HR) is a commonly measured parameter, often used in clinical practice, sports and scientific research; it is easy to reliably measure with very little equipment (Robergs and Landwehr, 2002)
body mass index (BMI) and VO2max were not related to HRmax
The present study demonstrates that factors other than age, including body composition, gender, fitness level, VO2max, BMI, or testing modality, add little to the accuracy of HRmax estimation
Summary
Heart rate (HR) is a commonly measured parameter, often used in clinical practice, sports and scientific research; it is easy to reliably measure with very little equipment (Robergs and Landwehr, 2002). Several test protocols exist which are commonly used, depending on the clinic’s experience, or the type of patient (e.g., sportspeople or patients with cardiovascular disease). These tests may use a stepwise increase in speed/Watts, or a ramped increase and they may vary in length. All of these differences make accurate comparison of the results of different studies on maximum exertion parameters difficult (Beltz et al, 2016). Since determining an individual’s actual HRmax (with the use of a maximal exercise test) is difficult and not always possible or advisable, it is usually estimated with the use of several formulae (Robergs and Landwehr, 2002)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.