Abstract
We have used interferometric and spectroscopic observations of HR 8257 to determine a three-dimensional orbit of the system. The orbit has a period of 12.21345 days and an eccentricity of 0.2895. The masses of the F0 and F2 dwarf components are 1.56 and 1.38 M☉ , respectively, with fractional errors of 1.4%. Our orbital parallax of 13.632 ± 0.095 mas, corresponding to a distance of 73.4 ± 0.6 pc, differs from the Hipparcos result by just 2% and has a significantly smaller uncertainty. From our spectroscopic observations and spectral energy distribution modeling we determine the component effective temperatures and luminosities to be T_eff(A) = 7030 ± 200 K and T_(eff)(B) = 6560 ± 200 K and L_A = 9.4 ± 0.3 L☉ and L_B = 4.7 ± 0.2 L☉ . The primary rotates pseudosynchronously, while the secondary is not far from its pseudosynchronous rotational velocity. Although both early-F stars are slowly rotating, neither component of this close binary is an Am star. A comparison with evolutionary tracks indicates that the stars are slightly metal poor, and although the components have evolved away from the zero-age main sequence, they are both still dwarfs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.