Abstract

Human papillomavirus (HPV) infection is causally related to a subset of oropharyngeal carcinomas (OPC) and is linked to a more favourable prognosis compared to HPV-negative OPC. The mechanisms underlying this effect on prognosis are not fully understood, but interactions with the tumour microenvironment may be pivotal. Here, we investigated the role of the tumour microenvironment in HPV-positive compared to HPV-negative cancer using 2D and 3D modelling of OPC interactions with stromal fibroblasts. HPV-negative, but not HPV-positive, OPC-derived cell lines induced a rapid fibroblast secretory response that supported 2D cancer cell migration and invasion in vitro. Array profiling of this HPV-negative induced fibroblast secretome identified hepatocyte growth factor (HGF) as the principal secreted factor that promoted cancer cell migration. The interaction between HPV-negative cell lines and fibroblasts in 2D was prevented using c-Met (HGF receptor) inhibitors, which further restricted both HPV-negative and positive cell invasion in 3D co-culture models. Furthermore, we discovered a synergistic relationship between HGF and IL-6 in the support of migration that relates JAK activation to HGF responsiveness in HPV-negative lines. In summary, our data show significant differences in the interactions between HPV-positive and HPV-negative OPC cells and stromal fibroblasts. In addition, we, provide in vitro evidence to support the clinical application of c-MET inhibitors in the control of early HPV-negative OPC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.