Abstract

This manuscript reviews the literature for all in silico, ex vivo, in vitro, in vivo and clinical studies of high-power short-duration (HPSD) radiofrequency (RF) ablations. It reviews the biophysics of RF energy delivery applicable to HPSD and the use of surrogate endpoints to guide the duration of HPSD ablations. In silico modeling shows that a variety of settings in power, contact force and RF duration can result in the same surrogate endpoint value of ablation index and several HPSD combinations produce lesion volumes similar to a low-power long-duration (LPLD) RF application. HPSD lesions are broader with more endocardial effect and are slightly shallower but still transmural. The first 10 s of RF application is most important for lesion formation with diminishing effect beyond 20 s. The ideal contact force is 10-20 g with only a small effect beyond 30 g. In vitro and in vivo models confirm that HPSD makes transmural lesions that are often broader and shallower, and with proper settings, result in fewer steam pops than LPLD. One randomized trial shows better outcomes with HPSD and validates lesion size index as a surrogate endpoint. Clinical studies of HPSD using comparator groups of LPLD ablations uniformly show shorter procedure times and shorter total RF energy delivery for HPSD. HPSD generally has a higher first pass vein isolation rate and a lower acute vein reconnection rate than LPLD. Although not dramatically different from LPLD, long-term freedom from atrial fibrillation and complication rates seem slightly better with HPSD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.