Abstract

AbstractThe use of different herbicide-resistant soybean technologies in proximity could lead to injury and yield loss due to an application error. Research was initiated to evaluate the effect of 6.25%, 12.5%, and 100% doses of isoxaflutole and mesotrione field use doses applied postemergence to 4-hyroxyphenylpyruvate (HPPD) inhibitor-susceptible soybean, representing physical drift or misapplication doses. Visible injury manifested as chlorosis with slight necrosis, progressing to necrosis and height reduction, with visible height reduction as the only symptom. Isoxaflutole at 6.25% and 12.5% injured V2 soybean more than V1 or V4 soybean at all evaluation dates. This is supported by soybean height data at 14, 28, and 42 d after treatment (DAT). Following the 100% dose, maximum injury occurred at 28 DAT with V1, V2, and V4 soybean injured 90%, 85%, and 72%, but injury declined over time. All isoxaflutole treatments reduced yield at least 310 kg ha−1, with no differences among application timings or between the two lowest doses for a revenue loss of US$147 ha−1 to US$623 ha−1. Visible injury following mesotrione manifested as chlorosis and necrosis advancing to visible height reduction. Following mesotrione at 6.25% and 12.5%, injury ranged from 20% to 36% among application timings and did not differ at 3 to 21 DAT. Soybean heights at 28 and 42 DAT do not support injury observations; therefore, the greater injury was due to chlorosis and necrosis. Following mesotrione at 100%, sensitivity decreased at 3 to 14 DAT when applied to later growth stages, with no differences at 42 DAT. Yields did not differ among application timings, but yield losses were at least 240 kg ha−1, with revenue losses of US$60 ha−1 and US$373 ha−1. Producers are cautioned to prevent off-target movement or errant application of isoxaflutole or mesotrione to HPPD inhibitor-susceptible soybean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.