Abstract

Anthocyanin derivatives are critical components that impart color to aging red wine. In this study, we developed a targeted metabolomic method for the simultaneously profiling of the primary thirty-seven malvidin-derived anthocyanin derivatives in red wine, including various pyranoanthocyanins and flavanols-related condensation products. First, high-performance liquid chromatography (HPLC) tandem ion trap and triple-quadrupole (QqQ) mass spectrometry were used to construct the mass spectral and chromatographic database of the anthocyanin derivatives that were formed in a model wine solution. Next, the targeted profiling analysis of these compounds was achieved on a QqQ mass spectrometer in the multiple reaction monitoring mode (MRM). The method displayed excellent linearity (R2 0.9391–0.9998), sensitivity (0.221–0.604 μg/L of limit of detection (LOD) and 0.274–1.157 μg/L of limit of quantification (LOQ) equivalent to malvidin-3-O-glucoside (Mv-glc)), and repeatability (less than 10% and 15% for intra-day and inter-day relative standard deviation (RSD) respectively). Partial least squares discriminant analysis (PLS-DA) based on this method showed great discrimination over different vintage wines, thereby promising to be an effective tool in wine anthocyanin and aging related study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call