Abstract

The conversion of raw fruits and vegetables, including tomatoes into processed food products creates side streams of residues that can place a burden on the environment. However, these processed residues are still rich in bioactive compounds and in an effort to valorize these materials in tomato by-product streams, the main aim of this study is to extract proteins and identify the main phenolic compounds present in tomato pomace (TP), peel and skins (TPS) by HPLC-DAD-ESI-QTOF. Forty different phenolic compounds were identified in the different tomato extracts, encompassing different groups of phenolic compounds, including derivatives of simple phenolic acid derivatives, hydroxycinnamoylquinic acid, flavones, flavonones, flavonol, and dihydrochalcone. In the crude protein extract (TPE) derived from tomatoes, most of these compounds were still present, confirming that valuable phenolic compounds were not degraded during food processing of these co-product streams. Moreover, phenolic compounds present in the tomato protein crude extract could provide a valuable contribution to the required daily intake of phenolics that are usually supplied by consuming fresh vegetables and fruits.

Highlights

  • The development and optimization of technologies for the recovery of bioactive compounds in food waste and subsequent valorization of these compounds in a range of industrial applications, including functional food ingredients, supplements or nutraceutical formulations is becoming an important solution to this challenge [1]

  • The additional phenolic compounds identified in the different tomato processing fractions analyzed during this study are discussed in relation to these different groups

  • The phenolic compounds identified in different tomato samples are presented in the Table 1

Read more

Summary

Introduction

The development and optimization of technologies for the recovery of bioactive compounds in food waste and subsequent valorization of these compounds in a range of industrial applications, including functional food ingredients, supplements or nutraceutical formulations is becoming an important solution to this challenge [1]. Among the biologically active compounds present in agricultural production residues are an important group of functional phenolic compounds. These are secondary metabolites which act to provide plant defense and protective mechanisms [2]. They have shown to have anti-inflammatory, antimicrobial, and antioxidant effects and they can have a protective role against various chronic degenerative and cardiovascular diseases, and cancer [3,4,5,6]. The intake, metabolism, and physiological effects all dietary antioxidants, including their interaction with other components in food must be taken into account when evaluating their health benefits [7]. Certain proteins and peptides exhibit antioxidant properties [8] and can contribute to antioxidant effects of phenolic compounds derived from plant protein extracts [9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call