Abstract
Type-I clathrate compounds YbxBa8–xGa16Ge30 have been synthesized by the high-pressure and high-temperature (HPHT) method rapidly. The effects of the synergy of atom filling and pressure regulation on the microstructure and thermal and electrical properties have been investigated. With the content of Yb atom increasing, the carrier concentration is improved, the electrical resistivity and the absolute Seebeck coefficient are decreased, while the thermal conductivity is reduced significantly. A series of extremely low lattice thermal conductivities are achieved, attributed to the enhancement of multiscale phonon scattering for the “rattling” of the filled guest atoms, the heterogeneous distribution of nano- and microstructures, grain boundaries, abundant lattice distortions, lattice deformations, and dislocations. As a result, a maximum ZT of about 1.07 at 873 K has achieved for the Yb0.5Ba7.5Ga16Ge30 sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.