Abstract

High quality grown polycrystalline diamond compact (PDC) with low residual stress was prepared using the infiltration method with nickel based alloys as the solvent under high temperature and high pressure (HPHT). Scanning electron microscopy (SEM) was used to observe the micro morphology of the diamond layer and the diamond/WC substrate interface. It was found that dense and interlaced microstructure with diamond-diamond (D-D) direct bonding formed in the diamond layer of PDC. Micro-Raman spectroscopy was used to measure the Raman shift of diamonds in the polycrystalline diamond (PCD) layer and the residual stress was calculated based on the Raman shift of diamonds. Experimental results show that the residual stress of PCD layer is compressive stress, and the range of the residual stress is from 0.075 to 0.250 GPa in the whole PCD layer, much lower than that of other reports (up to 1.400 GPa). Moreover, the distribution of the residual stress from the diamond surface layer to the inner cross-section is homogeneous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.