Abstract

In recent years, the rapidly growing use of graphs has sparked parallel graph analytics frameworks for leveraging the massive hardware resources, specifically graphics processing units (GPUs). However, the issues of the unpredictable control flows, memory divergence, and the complexity of programming have restricted high-level GPU graph libraries. In this work, we present HPGA, a high performance parallel graph analytics framework targeting the GPU. HPGA implements an abstraction which maps vertex programs to generalized sparse matrix operations on GPUs for delivering high performance. HPGA incorporates high-performance GPU computing primitives and optimization strategies with a high-level programming model. We evaluate the performance of HPGA for three graph primitives (BFS, SSSP, PageRank) with large-scale datasets. The experimental results show that HPGA matches or even exceeds the performance of MapGraph and nvGRAPH, two state-of-the-art GPU graph libraries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.