Abstract

This paper presents a novel and secure image encryption method. The plain image’s pixels are confused using the N-point crossover operation of genetic algorithms. Randomly paired rows and columns are determined by the two state variables of a six-dimensional hyperchaotic map. The number of crossover points, which are calculated by the two other state variables of the hyperchaotic map, differ from each other for each row or column pair. The crossover positions are specified according to the number of crossover points with the help of the last two state variables. The proposed algorithm generates the diffusion stage’s encryption key using the SHA-256 hash value of the plain image. Mutation and crossover operators are implemented using the 16-bit subblocks of the 256-bit hash value. The scrambled image’s pixels are altered with the generated encryption key and previously encrypted pixels. Keyspace and sensitivity, histogram, correlation, information entropy, differential, data loss, noise attack, and computational time analyzes are performed to test the safety and effectiveness of the encryption method. The experiments and simulation results show that the proposed encryption technique is highly secure and efficient since it can resist various attacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.