Abstract

Without a doubt, multiple core processors have become primary stream in parallel computing. Therefore, future generations of applications pivotal role will be played by parallelism. It must be noted that, the compilers and programmers could immensely benefit from a program source code classified in a structured manner. Such a classification surely helps programmers to identify parallelization scopes or reasoning about the program code, and associate with other programmers. To address the challenge of parallel programming, we worked on source-to-source compiler Bones and developed species extraction tool extended A-Darwin to ease parallel programming. In the work done, we present ’Algorithmic Species’, a new algorithm classification, that encapsulates required information for parallelization in classes, and embeds memory transfer requirements for optimization of communication on heterogeneous platforms. The evaluation of algorithmic species and the validation of extended A-Darwin are done by testing the tool against the benchmark suit HPCC. The unique approach is developed to generate code automatically for parallel target machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.