Abstract

Many real world-problems can be modelled as mathematical problems with nonnegative magnitudes, and, therefore, the solutions of these problems are meaningful only if their values are nonnegative. Examples of these nonnegative magnitudes are the concentration of components in a chemical compound, frequencies in an audio signal, pixel intensities on an image, etc. Some of these problems can be modelled to an overdetermined system of linear equations. When the solution of this system of equations should be constrained to nonnegative values, a new problem arises. This problem is called the Nonnegative Least Squares (NNLS) problem, and its solution has multiple applications in science and engineering, especially for solving optimization problems with nonnegative restrictions. Another important nonnegativity constrained decomposition is the Nonnegative Matrix Factorization (NMF). The NMF is a very popular tool in many fields such as document clustering, data mining, machine learning, image analysis, chemical analysis, and audio source separation. This factorization tries to approximate a nonnegative data matrix with the product of two smaller nonnegative matrices, usually creating parts based representations of the original data. The algorithms that are designed to compute the solution of these two nonnegative problems have a high computational cost. Due to this high cost, these decompositions can benefit from the extra performance obtained using High Performance Computing (HPC) techniques. Nowadays, there are very powerful computational systems that offer high performance and can be used to solve extremely complex problems in science and engineering. From modern multicore CPUs to the newest computational accelerators (Graphics Processing Units(GPU), Intel Many Integrated Core(MIC), etc.), the performance of these systems keeps increasing continuously. To make the most of the hardware capabilities of these HPC systems, developers should use software technologies such as parallel programming, vectorization, or high performance computing libraries. While there are several algorithms for computing the NMF and for solving the NNLS problem, not all of them have an efficient parallel implementation available. Furthermore, it is very interesting to group several algorithms with different properties into a single computational library. This thesis presents a high-performance computational library with efficient parallel implementations of the best algorithms to compute the NMF in the current state of the art. In addition, an experimental comparison between the different implementations is presented. This library is focused on the computation of the NMF supporting multiple architectures like multicore CPUs, GPUs and Intel MIC. The goal of the library is to offer a full suit of algorithms to help researchers, engineers or professionals that need to use the NMF. Another problem that is dealt with in this thesis is the updating of nonnegative decompositions. The updating problem has been studied for both the solution of the NNLS problem and the NMF. Sometimes there are nonnegative problems that are close to other nonnegative problems that have already been solved. The updating problem tries to take advantage of the solution of a problem A, that has already been solved in order to obtain a solution of a new problem B, which is closely related to problem A. With this approach, problem B can be solved faster than solving it from scratch and not taking advantage of the already known solution of problem A. In this thesis, an algorithmic scheme is proposed for both the updating of the solution of NNLS problems and the updating of the NMF. Empirical evaluations for both updating problems are also presented. The results show that the proposed algorithms are faster than solving the problems from scratch in all of the tested cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.