Abstract

A methodology to build discrete models of boundary-value problems (BVP) is presented. The method is applicable to arbitrary domains and employs only a scattered set of nodes to build approximate solutions to BVPs. A version of moving least-square interpolation and the collocation method are used to discretize BVP equations, which results in a truly meshless method (i.e. without a background mesh of integration points). h- and p-adaptive strategies are tested and very good convergence of the method was observed. The improvements in the methodology, in particular the introduction of spectral degrees of freedom, result in a fast and accurate method, significantly more efficient than the Finite Element Method or Element Free Galerkin Method. Several practical applications of the method to solve various engineering problems are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call