Abstract

We present an $hp$-error analysis of the discontinuous Galerkin time-stepping method for Volterra integrodifferential equations with weakly singular kernels. We derive new error bounds that are explicit in the time-steps, the degrees of the approximating polynomials, and the regularity properties of the exact solution. It is then shown that start-up singularities can be resolved at exponential rates of convergence by using geometrically graded time-steps. Our theoretical results are confirmed in a series of numerical tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.