Abstract

We consider a family of hp-version discontinuous Galerkin finite element methods with least-squares stabilization for symmetric systems of first-order partial differential equations. The family includes the classical discontinuous Galerkin finite element method, with and without streamline-diffusion stabilization, as well as the discontinuous version of the Galerkin least-squares finite element method. An hp-optimal error bound is derived in the associated DG-norm. If the solution of the problem is elementwise analytic, an exponential rate of convergence under p-refinement is proved. We perform numerical experiments both to illustrate the theoretical results and to compare the various methods within the family.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call