Abstract

Angiogenesis plays an essential role in the microenvironment of hepatocellular carcinoma (HCC). HOXD3 is involved in the metastasis and invasion of HCC cells; Whereas the underlying molecular mechanisms in the microenvironment of HCC remain unknown. Wound healing, transwell invasion, tube formation and spheroid sprouting assays were carried out to identify the effects of HCC-HOXD3-exosomes and genes on the migration of HCC cells. ChIP–PCR was applied to test the binding region of HOXD3 on CCR6, Med15, and CREBBP promoter. Exosome isolation and mRNA-seq were applied to examine the morphological characteristics of exosomes and the contained mRNA in exosomes. Co-IP and Immunofluorescence assays were used to demonstrate the role of CREBBP in the chromatin conformation of CCL20. The nude mice were used to identify the function of genes in regulating migration of HCC in vivo. In this study, integrated cellular and bioinformatic analyses revealed that HOXD3 targeted the promoter region of CCR6 and induced its transcription. CCR6 was delivered by exosomes to endothelial cells and promoted tumour migration. Overexpression of CCR6 promoted metastasis, invasion in HCCs and angiogenesis in endothelial cells (ECs), whereas its downregulation suppressed these functions. The role of HOXD3 in the metastasis and invasion of HCC cells was reversed after the suppression of CCR6. Furthermore, CCL20 was demonstrated as the ligand of CCR6, and its high expression was found in HCC tissues and cells, which was clinically associated with the poor prognosis of HCC. Mechanistically, HOXD3 targets the promoter regions of CREBBP and Med15, which affect CCL20 chromatin conformation by regulating histone acetylation and expression of Pol II to enhance the migration of HCCs. This study demonstrated the function of the HOXD3–CREBBP/Med15–CCL20–CCR6 axis in regulating invasion and migration in HCC, thus providing new therapeutic targets for HCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.