Abstract

Bat forelimbs are highly specialized for sustained flight, providing a unique model to explore the genetic programs that regulate vertebrate limb diversity. Hoxd9-13 genes are important regulators of stylopodium, zeugopodium, and autopodium development and thus evolutionary changes in their expression profiles and biochemical activities may contribute to divergent limb morphologies in vertebrates. We have isolated the genomic region that includes Hoxd12 and Hoxd13 from Carollia perspicillata, the short-tailed fruit bat. The bat Hoxd13 gene encodes a protein that shares 95% identity with human and mouse HOXD13. The expression pattern of bat Hoxd13 mRNA during limb development was compared with that of mouse. In bat and mouse hindlimbs, the expression patterns of Hoxd13 are relatively similar. However, although the forelimb Hoxd13 expression patterns in both organisms during early limb bud stages are similar, at later stages they diverge; the anterior expression boundary of bat Hoxd13 is posterior-shifted relative to the mouse. These findings, compared with the Hoxd13 expression profiles of other vertebrates, suggest that divergent Hoxd13 expression patterns may contribute to limb morphological variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.