Abstract

Ovarian cancer (OV) is a highly fatal malignant disease that commonly manifests at an advanced stage. Drug resistance, particularly platinum resistance, is a leading cause of treatment failure because first-line systemic chemotherapy primarily relies on platinum-based regimens. By analyzing the gene expression levels in the Cancer Genome Atlas database, Genotype-Tissue Expression database, and Gene Expression Omnibus datasets, we discerned that HOXB2 was highly expressed in OV and was associated with poor prognosis and cisplatin resistance. Immunohistochemistry and loss-of-function experiments on HOXB2 were conducted to explore its role in OV. We observed that suppressing HOXB2 could impair the growth and cisplatin resistance of OV in vivo and in vitro. Mechanical investigation and experimental validation based on RNA-Seq revealed that HOXB2 regulated ATP-binding cassette transporter members and the ERK signaling pathway. We further demonstrated that HOXB2 modulated the expression of long non-coding RNA DANCR, a differentiation antagonizing non-protein coding RNA, and thus influenced its downstream effectors ABCA1, ABCG1, and ERK signaling to boost drug resistance and cancer proliferation. These results verified that high expression of HOXB2 correlated with platinum resistance and poor prognosis of OV. Therefore, targeting HOXB2 may be a promising strategy for OV therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.