Abstract

IntroductionStudies have shown that a two-gene ratio (HOXB13:IL17BR) and a five-gene (BUB1B, CENPA, NEK2, RACGAP1, RRM2) molecular grade index (MGI) are predictive of clinical outcomes among early-stage breast cancer patients. In an independent population of lymph node-negative breast cancer patients from a community hospital setting, we evaluated the performance of two risk classifiers that have been derived from these gene signatures combined, MGI+HOXB13:IL17BR and the Breast Cancer Index (BCI).MethodsA case-control study was conducted among 4,964 Kaiser Permanente patients diagnosed with node-negative invasive breast cancer from 1985 to 1994 who did not receive adjuvant chemotherapy. For 191 cases (breast cancer deaths) and 417 matched controls, archived tumor tissues were available and analyzed for expression levels of the seven genes of interest and four normalization genes by RT-PCR. Logistic regression methods were used to estimate the relative risk (RR) and 10-year absolute risk of breast cancer death associated with prespecified risk categories for MGI+HOXB13:IL17BR and BCI.ResultsBoth MGI+HOXB13:IL17BR and BCI classified over half of all ER-positive patients as low risk. The 10-year absolute risks of breast cancer death for ER-positive, tamoxifen-treated patients classified in the low-, intermediate-, and high-risk groups were 3.7% (95% confidence interval (CI) 1.9% to 5.4%), 5.9% (95% CI 3.0% to 8.6%), and 12.9% (95% CI 7.9% to 17.6%) by MGI+HOXB13:IL17BR and 3.5% (95% CI 1.9% to 5.1%), 7.0% (95% CI 3.8% to 10.1%), and 12.9% (95% CI 7.1% to 18.3%) by BCI. Those for ER-positive, tamoxifen-untreated patients were 5.7% (95% CI 4.0% to 7.4%), 13.8% (95% CI 8.4% to 18.9%), and 15.2% (95% CI 9.4% to 20.5%) by MGI+HOXB13:IL17BR and 5.1% (95% CI 3.6% to 6.6%), 18.6% (95% CI 10.8% to 25.7%), and 17.5% (95% CI 11.1% to 23.5%) by BCI. After adjusting for tumor size and grade, the RRs of breast cancer death comparing high- versus low-risk categories of both classifiers remained elevated but were attenuated for tamoxifen-treated and tamoxifen-untreated patients.ConclusionAmong ER-positive, lymph node-negative patients not treated with adjuvant chemotherapy, MGI+HOXB13:IL17BR and BCI were associated with risk of breast cancer death. Both risk classifiers appeared to provide risk information beyond standard prognostic factors.

Highlights

  • Studies have shown that a two-gene ratio (HOXB13:interleukin 17 receptor B (IL17BR)) and a five-gene (BUB1B, centromere protein A (CENPA), never in mitosis gene arelated kinase 2 (NEK2), Rac GTPase-activating protein 1 (RACGAP1), ribonucleotide reductase M2 (RRM2)) molecular grade index (MGI) are predictive of clinical outcomes among early-stage breast cancer patients

  • The purpose of this study was to evaluate the performance of MGI+homeobox B13 (HOXB13):IL17BR and Breast Cancer Index (BCI), as defined previously [5,6], in an independent study population of estrogen receptor (ER)-positive, lymph node-negative breast cancer patients who were not treated with chemotherapy

  • In a large, independent population of patients with lymph node-negative invasive breast cancer not treated with chemotherapy, we were able to validate reported associations of MGI+HOX13:IL17BR and BCI with breast cancer death among ER-positive patients treated with tamoxifen

Read more

Summary

Introduction

Studies have shown that a two-gene ratio (HOXB13:IL17BR) and a five-gene (BUB1B, CENPA, NEK2, RACGAP1, RRM2) molecular grade index (MGI) are predictive of clinical outcomes among early-stage breast cancer patients. In an independent population of lymph node-negative breast cancer patients from a community hospital setting, we evaluated the performance of two risk classifiers that have been derived from these gene signatures combined, MGI+HOXB13:IL17BR and the Breast Cancer Index (BCI). MGI and HOXB13:IL17BR have been used together (hereafter referred to as MGI +HOXB13:IL17BR) to stratify ER-positive lymph nodenegative patients treated with endocrine therapy into three risk groups (low, intermediate, and high) [5] Both signatures have been newly combined to derive a patient risk score (range: 0 to 10), reflective of the rate of distant metastasis at 10 years post-diagnosis, known as the Breast Cancer Index (BCI) [6]. With the recent development of the BCI, the study aims were expanded to include a parallel evaluation of this newer risk classifier

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call