Abstract

In humans and mice, loss of HOXA13 function causes defects in the growth and patterning of the digits and interdigital tissues. Analysis of Hoxa13 expression reveals a pattern of localization overlapping with sites of reduced Bmp2 and Bmp7 expression in Hoxa13 mutant limbs. Biochemical analyses identified a novel series of Bmp2 and Bmp7 enhancer regions that directly interact with the HOXA13 DNA-binding domain and activate gene expression in the presence of HOXA13. Immunoprecipitation of HOXA13-Bmp2 and HOXA13-Bmp7 enhancer complexes from the developing autopod confirm that endogenous HOXA13 associates with these regions. Exogenous application of BMP2 or BMP7 partially rescues the Hoxa13 mutant limb phenotype, suggesting that decreased BMP signaling contributes to the malformations present in these tissues. Together, these results provide conclusive evidence that HOXA13 regulates Bmp2 and Bmp7 expression, providing a mechanistic link between HOXA13, its target genes and the specific developmental processes affected by loss of HOXA13 function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.