Abstract
BackgroundThe long chain non-coding RNA HOXA11-OS was recently identified. Increasing studies have shown that HOXA11-OS has regulatory effects on genes in gastric cancer, prostate cancer, and various kidney diseases, but research on its role in systemic lupus erythematosus is still lacking. The present study aimed to investigate the role of HOXA11-OS in the regulation of podocyte autophagy in the development of lupus nephritis (LN) and its potential molecular mechanism.MethodsmRNA and protein expression of the target gene (i.e., Cyr61) was detected by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. Mouse podocytes were induced using serum immunoglobulin G (IgG) from patients with lupus and their viability was detected using the cell counting kit-8 assay. The interaction of miR-124-3p with HOXA11-OS and Cyr61 was analyzed by double luciferase reporter gene assay. Serum autoantibody levels were detected by enzyme-linked immunosorbent assay. Pathological lesions in the kidney tissue were detected by hematoxylin–eosin and periodate-Schiff staining. The independent samples t-test was used for comparing two groups, and one-way analysis of variance for comparing multiple groups.ResultsHOXA11-OS was highly expressed in LN tissues, serum, and cells, and the expression of some key autophagy factors and Cyr61 was significantly increased, while miR-124-3p expression was significantly decreased. In vitro, LN-IgG inhibited podocyte activity, increased autophagy and Cyr61 expression, and aggravated podocyte injury in a time- and dose-dependent manner. As a competitive endogenous RNA of miR-124-3p, HOXA11-OS promoted the expression of Cyr61, thus enhancing the autophagy increase induced by LN-IgG and aggravating podocyte injury. Knockdown of HOXA11-OS had the opposite effect. miR-124-3p mimic or Cyr61 knockdown restored the high expression of autophagy factors and Cyr61 induced by HOXA11-OS overexpression and alleviated podocyte injury. Further in vivo experiments showed that injection of sh-HOXA11-OS adeno-associated virus downregulated HOXA11-OS and significantly alleviated renal damage in lupus mice.ConclusionsHOXA11-OS is involved in the occurrence and development of LN by regulating podocyte autophagy through miR-124-3p/Cyr61 sponging, which may provide a good potential therapeutic target for LN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.