Abstract

BackgroundThe pilidium larva is a novel body plan that arose within a single clade in the phylum Nemertea - the Pilidiophora. While the sister clade of the Pilidiophora and the basal nemerteans develop directly, pilidiophorans have a long-lived planktotrophic larva with a body plan distinctly different from that of the juvenile. Uniquely, the pilidiophoran juvenile develops inside the larva from several discrete rudiments. The orientation of the juvenile with respect to the larval body varies within the Pilidiophora, which suggests that the larval and juvenile anteroposterior (AP) axes are patterned differently. In order to gain insight into the evolutionary origins of the pilidium larva and the mechanisms underlying this implied axial uncoupling, we examined the expression of the Hox genes during development of the pilidiophoran Micrura alaskensis.ResultsWe identified sequences of nine Hox genes and the ParaHox gene caudal through a combination of transcriptome analysis and molecular cloning, and determined their expression pattern during development using in situ hybridization in whole-mounted larvae. We found that Hox genes are first expressed long after the pilidium is fully formed and functional. The Hox genes are expressed in apparently overlapping domains along the AP axis of the developing juvenile in a subset of the rudiments that give rise to the juvenile trunk. Hox genes are not expressed in the larval body at any stage of development.ConclusionsWhile the Hox genes pattern the juvenile pilidiophoran, the pilidial body, which appears to be an evolutionary novelty, must be patterned by some mechanism other than the Hox genes. Although the pilidiophoran juvenile develops from separate rudiments with no obvious relationship to the embryonic formation of the larva, the Hox genes appear to exhibit canonical expression along the juvenile AP axis. This suggests that the Hox patterning system can maintain conserved function even when widely decoupled from early polarity established in the egg.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-015-0133-5) contains supplementary material, which is available to authorized users.

Highlights

  • The pilidium larva is a novel body plan that arose within a single clade in the phylum Nemertea - the Pilidiophora

  • In order to understand the mechanics of pilidiophoran development and the origin of a novel larval body plan, we examined the expression of the Hox genes during development of a pilidiophoran nemertean M. alaskensis

  • We looked at expression of one of the three ParaHox genes, caudal (Cdx), which is a posterior marker in other animals [15]

Read more

Summary

Introduction

The pilidium larva is a novel body plan that arose within a single clade in the phylum Nemertea - the Pilidiophora. While the sister clade of the Pilidiophora and the basal nemerteans develop directly, pilidiophorans have a long-lived planktotrophic larva with a body plan distinctly different from that of the juvenile. In the most extreme cases, often termed maximally indirect development, adults and larvae differ so dramatically that they were originally described as different animals. Such development is exemplified by the pilidiophoran worms of the phylum Nemertea. Days to weeks after the larval body plan is established, a juvenile begins to develop from distinct rudiments, called imaginal discs, that eventually fuse around the larval stomach. The juvenile escapes the larval body and devours the larval tissues in a catastrophic metamorphosis

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.