Abstract

Hox genes are essential for growth and patterning of the tetrapod limb skeleton. Mice mutant for the Hoxd-13 gene have an important delay in morphogenesis owing to reduced proliferation. Based on the appearance of atavisms in such mice, we suggested that modifications of Hox gene regulation may have been a source of morphological variation during the evolution of tetrapod limbs. Pectoral and pelvic fins are homologous to fore- and hindlimbs, respectively. To compare the relative importance of Hox genes during fin versus limb morphogenesis, we cloned zebrafish (Danio rerio) HoxD and HoxA complex genes and analysed their expression during fin development. The results suggest a scheme for the fin-limb transition in which the distal autopods (digits) are neomorphic structures produced by unequal proliferation of the posterior part of an ancestral appendix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.