Abstract
How the formidable diversity of forms emerges from developmental and evolutionary processes is one of the most fascinating questions in biology. The homeodomain-containing Hox proteins were recognized early on as major actors in diversifying animal body plans. The molecular mechanisms underlying how this transcription factor family controls a large array of context- and cell-specific biological functions is, however, still poorly understood. Clues to functional diversity have emerged from studies exploring how Hox protein activity is controlled through interactions with PBC class proteins, also evolutionary conserved HD-containing proteins. Recent structural data and molecular dynamic simulations add further mechanistic insights into Hox protein mode of action, suggesting that flexible folding of protein motifs allows for plastic protein interaction. As we discuss in this review, these findings define a novel type of Hox-PBC interaction, weak and dynamic instead of strong and static, hence providing novel clues to understanding Hox transcriptional specificity and diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.