Abstract

Numerous studies of insight problem solving are focused on both the control and storage systems of working memory. We obtained contradictory data about how working memory systems are involved in insight problem solving process. We argue that measuring the dynamics of the control system and storage systems through the course of problem solving can provide a more refined view on the processes involved, as a whole, and explain the existing controversies. We theorize that specific insight mechanisms require varying working memory capacities at different stages of the problem solving process. Our study employed a dual task paradigm to track the dynamics of working memory systems load during problem solving by measuring the reaction time in a secondary probe-task during different stages of problem solving. We varied the modality (verbal, visual) and the complexity of the probe-task during insight and non-insight problem solving. The results indicated that the dynamics of working memory load in insight problems differs from those in non-insight problems. Our first experiment shows that the complexity of the probe-task affects overall probe-task reaction times in both insight and non-insight problem solving. Our second experiment demonstrates that the solution of a non-insight problem is primarily associated with the working memory control system, while insight problems rely on relevant storage systems. Our results confirm that insight process requires access to various systems of working memory throughout the solution. We found that working memory load in non-insight problems increases from stage to stage due to allocation of the attentional control resources to interim calculations. The nature of the dynamics of working memory load in insight problems remains debatable. We claim that insight problem solving demands working memory storage during the entire problem solving process and that control system plays an important role just prior to the solution.

Highlights

  • For a long time, the problem of working memory role in problem solving, in insight problems, was a focus of numerous studies in the field

  • Despite the difference between the solution rates of insight and noninsight problems, we suggest that the difficulty of problems has no major effect on reaction time because for both problem types, only trials of the approximately same duration (30–300 s) were analyzed

  • There was no significant difference between insight and noninsight problems solution times in the experimental group [t(31) = 1.97, p = 0.058, r = 0.185]. These results revealed that insight problems were harder than we expected in the control condition, but probe-tasks involvement removed the difference between insight and non-insight problems

Read more

Summary

Introduction

The problem of working memory role in problem solving, in insight problems, was (and still is) a focus of numerous studies in the field. A number of reviews and original research articles have been devoted to working memory in problem solving (Hambrick and Engle, 2003; Wiley and Jarosz, 2012). An interest in the role of working memory during. Baddeley’s working memory model describes both the storage systems (visuo-spatial sketchpad, phonological loop and episodic buffer) required to hold representations and the control system (central executive) enabling the restructuring process (Baddeley, 2002). Investigating the processes involved in working memory during problem solving can provide a unique perspective into its internal structure. The conclusions drawn from the working memory studies can be useful for answering the vital question: “Are there any specific mechanisms dedicated to insight solutions?”

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call