Abstract

BackgroundPlant growth chambers provide a controlled environment to analyse the effects of environmental parameters (light, temperature, atmospheric gas composition etc.) on plant function. However, it has been shown that a ‘chamber effect’ may exist whereby results observed are not due to an experimental treatment but to inconspicuous differences in supposedly identical chambers. In this study, Vicia faba L. ‘Aquadulce Claudia’ (broad bean) plants were grown in eight walk-in chambers to establish if a chamber effect existed, and if so, what plant traits are best for detecting such an effect. A range of techniques were used to measure differences between chamber plants, including chlorophyll fluorescence measurements, gas exchange analysis, biomass, reproductive yield, anatomical traits and leaf stable carbon isotopes.Results and discussionFour of the eight chambers exhibited a chamber effect. In particular, we identified two types of chamber effect which we term ‘resolvable’ or ‘unresolved’; a resolvable chamber effect is caused by malfunctioning components of a chamber and an unresolved chamber effect is caused by unknown factors that can only be mitigated by appropriate experimental design and sufficient replication. Not all measured plant traits were able to detect a chamber effect and no single trait was capable of detecting all chamber effects. Fresh weight and flower count detected a chamber effect in three chambers, stable carbon isotopes (δ13C) and net rate CO2 assimilation (An) identified a chamber effect in two chambers, stomatal conductance (gs) and total performance index detected an effect only in one chamber.Conclusion(1) Chamber effects can be adequately detected by fresh weight measurements and flower counts on Vicia faba plants. These methods were the most effective in terms of detection and most efficient in terms of time. (2) δ13C, gs and An measurements help distinguish between resolvable and unresolved chamber effects. (3) Unresolved chamber effects require experimental unit replication while resolvable chamber effects require investigation, repair and retesting in advance of initiating further experiments.

Highlights

  • IntroductionPlant growth chambers provide a controlled environment to analyse the effects of environmental parameters (light, temperature, atmospheric gas composition etc.) on plant function

  • Plant growth chambers provide a controlled environment to analyse the effects of environmental parameters on plant function

  • The purpose of the experiment was to investigate whether a chamber effect was present between eight Conviron (Winnipeg, Manitoba, Canada) BDW40 walkin plant growth chambers and to determine which plant traits would be most effective for detecting it

Read more

Summary

Introduction

Plant growth chambers provide a controlled environment to analyse the effects of environmental parameters (light, temperature, atmospheric gas composition etc.) on plant function. Controlled environment plant growth chambers are invaluable in allowing researchers to determine the Porter et al Plant Methods (2015) 11:44 environmental factor. Plant growth chambers allow researchers to mechanistically determine what environmental conditions result in a specific plant response. Long-term chamber experiments are probably more susceptible to ‘unwanted variation’ caused by chambers as environmental parameters can alter during experiments. Examples of this include light decay over time as light bulbs age, and changes in temperature, humidity and gas concentration as a result of sensor drift. These can be broadly divided into two types: within-chamber experiments and between-chamber experiments

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call