Abstract

The findings of Deep Impact on the structure and composition of Tempel-1 are compared with our experimental results on large (20 cm diameter and up to 10 cm high) samples of gas-laden amorphous ice which does not contain dust. The mechanical ∼tensile strength inferred for Tempel-1: up to 12 kPa is close to our experimental findings of 2–4 kPa. This means that Tempel-1 is as fluffy as our very fluffy, talcum like, ice sample. The thermal inertia: 30<I<100 W K−1 m−2 s1/2 is close to our value of 80. The density of 350±250 kg m−3, is close to our value of 250–300 kg m−3, taking into account an ice/silicate ratio of 1 in the comet, while we study pure ice. Surface morphological features, such as non-circular depressions and chaotic terrain, were observed in our experiments. The only small increase in the gas/water vapor ratio pre- and post-impact, suggest that in the area excavated by the impactor, the 135 K front did not penetrate deeper than a few meters. Altogether, the agreement between the findings of Deep Impact and our experimental results point to a loose agglomerate of ice grains (with a silicate-organic core), which was formed by a very gentle aggregation of the ice grains, without compaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call