Abstract

Bifurcating evolutionary trees are commonly used to describe genetic relationships between populations, but may not be appropriate for populations that did not evolve in a hierarchical manner. The degree to which bifurcating trees distort genetic relationships between populations can be quantified with R(2), the proportion the variation in a matrix of genetic distances between populations that is explained by a tree. Computer simulations were used to measure how well the unweighted pair group method with arithmetic mean (UPGMA) and neighbor-joining (NJ) trees depicted population structure for three evolutionary models: a hierarchical model of population fragmentation, a linear stepping-stone model of gene flow and a two-dimensional stepping-stone model of gene flow. These simulations showed that the UPGMA did an excellent job of describing population structure when populations had a bifurcating history of fragmentation, but severely distorted genetic relationships for the linear and two-dimensional stepping-stone models. The NJ algorithm worked well in a broader range of evolutionary histories, including the linear stepping-stone model. A computer program for performing the calculations described in this study is available for download at www.montana.edu/kalinowski.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.