Abstract

Development rate of ectothermic animals varies with temperature. Here we use data derived from laboratory constant temperature incubation experiments to formulate development rate models that can be used to model embryonic development rate in sea turtle nests. We then use a novel method for detecting the time of hatching to measure the in situ incubation period of sea turtle clutches to test the accuracy of our models in predicting the incubation period from nest temperature traces. We found that all our models overestimated the incubation period. We hypothesize three possible explanations which are not mutually exclusive for the mismatch between our modeling and empirically measured in situ incubation period: (1) a difference in the way the incubation period is calculated in laboratory data and in our field nests, (2) inaccuracies in the assumptions made by our models at high incubation temperatures where there is no empirical laboratory data, and (3) a tendency for development rate in laboratory experiments to be progressively slower as temperature decreases compared with in situ incubation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.