Abstract

We study how the next generation of Cosmic Microwave Background (CMB) measurement missions (such as EPIC, LiteBIRD, PRISM and COrE) will be able to constrain the inflationary landscape in the hardest to disambiguate situation in which inflation is simply described by single-field slow-roll scenarios. Considering the proposed PRISM and LiteBIRD satellite designs, we simulate mock data corresponding to five different fiducial models having values of the tensor-to-scalar ratio ranging from 10-1 down to 10-7. We then compute the Bayesian evidences and complexities of all Encyclopædia Inflationaris models in order to assess the constraining power of PRISM alone and LiteBIRD complemented with the Planck 2013 data. Within slow-roll inflation, both designs have comparable constraining power and can rule out about three quarters of the inflationary scenarios, compared to one third for Planck 2013 data alone. However, we also show that PRISM can constrain the scalar running and has the capability to detect a violation of slow roll at second order. Finally, our results suggest that describing an inflationary model by its potential shape only, without specifying a reheating temperature, will no longer be possible given the accuracy level reached by the future CMB missions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.