Abstract

AbstractDynamic processes in complex networks have received much attention. This attention reflects the fact that dynamic processes are the main source of changes in the structural properties of complex networks (e.g., clustering coefficient and average shortest-path length). In this paper, we develop an agent-based model to capture, compare, and explain the structural changes within a growing social network with respect to individuals’ social characteristics (e.g., their activities for expanding social relations beyond their social circles). According to our simulation results, the probability increases that the network’s average shortest-path length is between 3 and 4, if most of the dynamic processes are based on random link formations. That means, in Facebook, the existing average shortest path length of 4.7 can even shrink to smaller values. Another result is that, if the node increase is larger than the link increase when the network is formed, the probability increases that the average shortestpath length is between 4 and 8.KeywordsNetwork PropertiesNetwork Growth ModelsSmall World TheoryNetwork ScienceSimulationClustering CoefficientComplex Networks

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call