Abstract

AbstractQuantified coat pattern dissimilarity provides a visible surface for individual animal traceability to populations. We determined the feasibility in quantifying uniqueness of stripe patterns of Cape mountain zebra (CMZ; Equus zebra zebra) using geometric morphometrics. We photogrammetrically created dense surface models of CMZ (N = 56). Stripe edges were landmarked, superimposed and compared for shape variation across replicates and the population. Significant allometry in stripe patterns prompted allometric correction to remove increased curvature of stripes at the rump, belly and back with larger adult individuals, to facilitate equilibrated comparison between individuals. Re-landmarked replicates showed lower dissimilarity (Di) than non-replicates (Dp), representing minimal landmarking error. Individuals were 78.07 ± 1.79% unique (U=1−DiDp×100%) relative to the study population. Size, the number of torso stripes and degree of branching in four rear torso stripes described the most shape variation (36.79%) but a significant portion could only be distinguished with geometric morphometrics (41.82%). This is the first known use of geometric morphometrics to quantify coat pattern uniqueness, using a model species to provide baseline individual morphological variation. Measures of coat pattern similarity have a place in phenotypic monitoring and identification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call