Abstract

We consider in this paper a general reaction-diffusion equation of the KPP (Kolmogorov, Petrovskii, Piskunov) type, posed on an infinite cylinder. Such a model will have a family of pulsating waves of constant speed, larger than a critical speed c∗. The family of all supercritical waves attract a large class of initial data, and we try to understand how. We describe in this paper the fate of an initial datum trapped between two supercritical waves of the same velocity: the solution will converge to a whole set of translates of the same wave, and we identify the convergence dynamics as that of an effective drift, around which an effective diffusion process occurs. In several nontrivial particular cases, we are able to describe the dynamics by an effective equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.