Abstract

Oceanic detachment faults represent an end-member form of seafloor creation, associated with relatively weak magmatism at slow-spreading mid-ocean ridges. We use 3-D numerical models to investigate the underlying mechanisms for why detachment faults predominantly form on the transform side (inside corner) of a ridge-transform intersection as opposed to the fracture zone side (outside corner). One hypothesis for this behavior is that the slipping, and hence weaker, transform fault allows for the detachment fault to form on the inside corner, and a stronger fracture zone prevents the detachment fault from forming on the outside corner. However, the results of our numerical models, which simulate different frictional strengths in the transform and fracture zone, do not support the first hypothesis. Instead, the model results, combined with evidence from rock physics experiments, suggest that shear-stress on transform fault generates excess lithospheric tension that promotes detachment faulting on the inside corner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.