Abstract

K-means plays a vital role in data mining and is the simplest and most widely used algorithm under the Euclidean Minimum Sum-of-Squares Clustering (MSSC) model. However, its performance drastically drops when applied to vast amounts of data. Therefore, it is crucial to improve K-means by scaling it to big data using as few of the following computational resources as possible: data, time, and algorithmic ingredients. We propose a new parallel scheme of using K-means and K-means++ algorithms for big data clustering that satisfies the properties of a “true big data” algorithm and outperforms the classical and recent state-of-the-art MSSC approaches in terms of solution quality and runtime. The new approach naturally implements global search by decomposing the MSSC problem without using additional metaheuristics. This work shows that data decomposition is the basic approach to solve the big data clustering problem. The empirical success of the new algorithm allowed us to challenge the common belief that more data is required to obtain a good clustering solution. Moreover, the present work questions the established trend that more sophisticated hybrid approaches and algorithms are required to obtain a better clustering solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.