Abstract

Yeast colonies growing on solid medium begin at a particular point in their development to produce volatile ammonia and to alkalize their surroundings.1 Ammonia serves as a long-range signal between neighboring colonies and was shown to influence various aspects of colony biology including metabolic reprogramming and differentiation. In a recent paper we presented the impact of deleting of key stress defense enzymes on ammonia signaling and colony development. New findings suggest that it is not stress defense, but rather proper development guided by ammonia signaling and related metabolic changes that are important factors in the long-term survival of a colony cell population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.