Abstract

Min-max functions are dynamic programming operators of zero-sum deterministic games with finite state and action spaces. The problem of computing the linear growth rate of the orbits (cycle-time) of a min-max function, which is equivalent to computing the value of a deterministic game with mean payoff, arises in the performance analysis of discrete event systems. We present here an improved version of the policy iteration algorithm given by Gaubert and Gunawardena in 1998 to compute the cycle-time of a min-max functions. The improvement consists of a fast evaluation of the spectral projector which is adapted to the case of large sparse graphs. We present detailed numerical experiments, both on randomly generated instances, and on concrete examples, indicating that the algorithm is experimentally fast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.