Abstract

Spatial domain image filters (e.g., bilateral filter, non-local means, locally adaptive regression kernel) have achieved great success in denoising. Their overall performance, however, has not generally surpassed the leading transform domain-based filters (such as BM3-D). One important reason is that spatial domain filters lack efficiency to adaptively fine tune their denoising strength; something that is relatively easy to do in transform domain method with shrinkage operators. In the pixel domain, the smoothing strength is usually controlled globally by, for example, tuning a regularization parameter. In this paper, we propose spatially adaptive iterative filtering (SAIF) is the Middle Eastern/Arabic name for sword. This acronym somehow seems appropriate for what the algorithm does by precisely tuning the value of the iteration number. a new strategy to control the denoising strength locally for any spatial domain method. This approach is capable of filtering local image content iteratively using the given base filter, and the type of iteration and the iteration number are automatically optimized with respect to estimated risk (i.e., mean-squared error). In exploiting the estimated local signal-to-noise-ratio, we also present a new risk estimator that is different from the often-employed SURE method, and exceeds its performance in many cases. Experiments illustrate that our strategy can significantly relax the base algorithm's sensitivity to its tuning (smoothing) parameters, and effectively boost the performance of several existing denoising filters to generate state-of-the-art results under both simulated and practical conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.