Abstract
ABSTRACTTropical geometry is sensitive to embeddings of algebraic varieties inside toric varieties. The purpose of this article is to advertise tropical modifications as a tool to locally repair bad embeddings of plane curves, allowing the re-embedded tropical curve to better reflect the geometry of the input curve. Our approach is based on the close connection between analytic curves (in the sense of Berkovich) and tropical curves. We investigate the effect of these tropical modifications on the tropicalization map defined on the analytification of the given curve.Our study is motivated by the case of plane elliptic cubics, where good embeddings are characterized in terms of the j-invariant. Given a plane elliptic cubic whose tropicalization contains a cycle, we present an effective algorithm, based on non-Archimedean methods, to linearly re-embed the curve in dimension 4 so that its tropicalization reflects the j-invariant. We give an alternative elementary proof of this result by interpreting the initial terms of the A-discriminant of the defining equation as a local discriminant in the Newton subdivision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.