Abstract

Homogeneous quantum gases open up new possibilities for studying many-body phenomena and have now been realized for a variety of systems. For gases with short-range interactions the way to make the cloud homogeneous is, predictably, to trap it in an ideal (homogeneous) box potential. We show that creating a close to homogeneous dipolar gas in the roton regime, when long-range interactions are important, actually requires trapping particles in soft-walled (inhomogeneous) box-like potentials. In particular, we numerically explore a dipolar gas confined in a pancake trap which is harmonic along the polarization axis and a cylindrically symmetric power-law potential ${r}^{p}$ radially. We find that intermediate $p$'s maximize the proportion of the sample that can be brought close to the critical density required to reach the roton regime, whereas higher $p$'s trigger density oscillations near the wall even when the bulk of the system is not in the roton regime. We characterize how the optimum density distribution depends on the shape of the trapping potential and find it is controlled by the trap wall steepness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.