Abstract

As an important part of smart city, intelligent transportation is an critical breakthrough to solve urban traffic congestion, build an integrated transportation system, realize the intelligence of traffic infrastructure and promote sustainable development of traffic. In order to investigate the construction of intelligent transportation in cities, 20 initial affecting variables were determined in this study based on literature analysis. A questionnaire collected from professionals in intelligent transportation was conducted, and a total of 188 valid responses were received. Then the potential grouping was revealed through exploratory factor analysis. Finally, a causal model containing seven concepts was established using the practical experience and knowledge of the experts. A root cause analysis method based on fuzzy cognitive map (FCM) was also proposed to simulate intelligent transportation construction (ITC). The results indicate:(1) The 20 variables can be divided into six dimensions: policy support (PS), traffic sector control (TSC), technical support (TS), communication foundation (CF), residents’ recognition (RR), and talent quality (TQ); and (2) In the FCM model, all six concept nodes (PS, TSC, TS, CF, RR, and TQ) have a significant positive correlation with the target concept node ITC. The rank of the six dimensions according to correlation strength is TS, CF, PS, TSC, RR, and TQ. The findings of this paper can help academics and practitioners understand the deep-seated determinants of urban intelligent transportation construction more comprehensively, and provide valuable suggestions for policy makers. And thus, the efficiency of intelligent transportation construction can be improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.